Test Results of a Gps/inertial Navigation System Using a Low Cost Mems Imu
نویسنده
چکیده
This paper describes the design, operation, and test results of a miniature, low cost integrated GPS/inertial navigation system that uses commercial off-the-shelf Micro-Electro-Mechanical System (MEMS) accelerometers and gyroscopes. The MEMS inertial measurement unit (IMU) is packaged in a small size and provides the raw IMU data through a serial interface to a processor board where the inertial navigation solution and integrated GPS/inertial Kalman filter is generated. The GPS/inertial software integration is performed using NAVSYS' modular InterNav software product. This allows integration with different low cost GPS chip sets or receivers and also allows the integrated GPS/inertial navigation solution to be embedded as an application on a customer's host computer. This modular, object oriented architecture facilitates integration of the miniature MEMS GPS/INS navigation system for embedded navigation applications and is designed to handle the large errors characteristic of a low grade MEMS IMU. Test results are presented in this paper showing the performance of the integrated MEMS GPS/inertial navigation system. Data is provided showing the position, velocity and attitude accuracy when operating with GPS aiding and also for periods where GPS dropouts occur and alternative navigation update sources are used to bound the MEMS inertial navigation error growth.
منابع مشابه
Performance Test Results of an Integrated GPS/MEMS Inertial Navigation Package
This paper describes the design, operation and performance test results of a miniature, low cost integrated GPS/inertial navigation system (INS) designed for use in UAV or UGV guidance systems. The system integrates a miniaturized commercial GPS with a low grade Micro-Electro-Mechanical (MEMS) inertial measurement unit (IMU). The MEMS IMU is a small self-contained package (< 1 cu inch) and incl...
متن کاملIntegration of Ppp Gps and Low Cost Imu
GPS and low-cost INS integrated system are expected to become more widespread as a result of the availability of low cost inertial Micro-Electro-Mechanical Sensors (MEMS). Currently most of the integration systems are based on the differential GPS (DGPS) to ensure the navigation performance. However with the requirements of the base station, the system cost and complexity are significantly incr...
متن کاملGPS/INS Integration for Vehicle Navigation based on INS Error Analysis in Kalman Filtering
The Global Positioning System (GPS) and an Inertial Navigation System (INS) are two basic navigation systems. Due to their complementary characters in many aspects, a GPS/INS integrated navigation system has been a hot research topic in the recent decade. The Micro Electrical Mechanical Sensors (MEMS) successfully solved the problems of price, size and weight with the traditional INS. Therefore...
متن کاملRealization of an Adaptive Hybrid Low-cost GPS/INS Integrated Navigation System with Switched Position-Domain and Range-Domain Filtering Strategy
GPS receivers are widely used in navigation and positioning, due to the global availability of GPS signals, its low cost and low power consumption. However, it does not work sufficiently in all signal environments. This raises the need to integrate GPS with other sensor systems (for instance, the inertial navigation system (INS)) to have a robust, continuous navigation solution regardless of th...
متن کاملPrecision and Reliability Incensement of Inertial Navigation System with Rotation and Redundancy
Precision and reliability are two main performance characteristic in low-cost Inertial Navigation System(INS). Increase of precision in low-cost INS without auxiliary sensors is main challenge. Bias instability leads to position drift error in inertial navigation system. In addition, fault occurrence makes the sensor reliability is decreased. Rotation of Inertial Measurement Unit(RIMU) and use ...
متن کامل